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ISOLATION OF SINGULARITIES IN THE SOLUTION OF TWO-DIMENSIONAL PROBLEMS 
OF THE THEORY OF ELASTICITY IN IRRE~U~R MULTIPLY CONNECTS DO~INS* 

A.M. LEVIN 

A general method is considered for isolating the singularities of the 
solutions of a plane problem of the theory of elasticity, a problem of 
the bending of thin elastic plates, and harmonic problems of the theory 
of elasticity in multiply connected domains with boundary breaks. The 
procedure is used to-solve the problems by the method of compensating 
loads (MCL) or the method of integral equations of the first kind /l-6/. 

Fig.1 Fig.2 

In the MCL the components of the directionally deformed state (DOS) are sought as 
potentials which are distributed along contours, spaced a certain distance from the domain 
boundary, rather than distributed along the boundary itself. When the potentials are sub- 
stituted into the boundary conditions, systems of integral equations of the 1st kind are 
obtained in the unknown densities. Methods of regularizing the solution of these equations 
were considered in /3-6/. When the components of the DDS have singularities at corner points 
of the boundary, the modification of the MCL consists in adding to the potentials of the 
singular solutions of homogeneous boundary value problems for the auxiliary wedge-shaped 
domains /?-12/ (Fig-l). However, if the initial domain is multiply connected and the corner 
points axe located on "interior" pieces of the boundary (Fig.2), the solutions for the wedge 
cannot be used in MCL. In this case the cut needed to isolate the one-valued branches of the 

*Prikl.Matem.t4ekhan.,51,1,39-46,1307 
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functions necessarily intersects the domain. The components of DDS prove to be discontinuous 
inside the domain and on the "outer" part of the boundary, since, on circuiting a singular 
point along a closed contour, the singular solutions for the wedge return to different values 
at the start of the circuit even in the case of real eigenvalues. 

The construction of singular solutions in bipolar coordinates /13/ is considered, when, 
instead of wedge-shaped auxiliary domains, the outsides of circular crescents with vertices 
at the singular points 1141 are chosen, The functions obtained have the necessary nature of 
the singularities and, as distinct from the case of a wedge , satisfy the homogeneous equations 
in the initial multiply connected domain. 

1. The method of compensating loads (MCL). In the domain GcRf with boundary 
r, we consider the boundary value problem 

Lm (s) = f (s), r EG (1.1) 
lw Ir = cp (1.2) 

where L is a linear elliptic operator of order 2m,for which we know the fundamental solution 

K (s, Y), I = (4, . . ., 44 are differential operators of the boundary conditions, and cp =(mr,..., 

%I) is a vector function, given on I‘. We assume that the existence, uniqueness, and 
stability conditions hold for the solution of problem (l-l), (1.2). The domain G may be 
multiply connected and unbounded, while the operators I of the boundary conditions may be of 
mixed type. 

The MCL consists of the following /l/. We consider a wider domain G' (G CG’) with a 
sufficiently smooth boundary I", located at a distance 

d(lT,T) = cl>0 0.3) 
from r. Along the contour .r' we apply distributed compensating loads with unknown densities 

21 (Y), * * a* z,(y) (the specific form of the load will be indicated for each type of problem). 
The approximate solution of the problem is sought as 

Wz(+)=:$K(GY)f(Y)dY+ i S tjK(x7Y)zj(Y)&r, 
G j==l r’ 

where the kernel tjK(x,y) is the solution of Eq.ll.1) for the corresponding unit loads con- 
centrated at the point y E I?. The kernels are obtained by applying the known differential 
operators tj to the fundamental solution K(x, y). The function w%(x) satisfies Eq.(l.l) 
exactly. Gn substituting it into boundary conditions (1.2) and using the spacing (1.3) 
between the contours r and r', we obtain the following system of integral equations of the 
1st kind in the vector function s(y): 

with continuous kernels Ki, (x, y) = 4tjK (x, g), i, j = 1, . . ., m. 
The MCL is used in just the same way to solve elliptic systems (e.g., in the plane 

problem of the theory of elasticity). A feature of Eqs.tl.5) is_ that they may not have an 
exact solution S(Y) /3-5/. For, if I? and j(z) are sufficiently smooth, the left-hand side 
of (1.5) is differentiable on r for any e(y)EL,(I"), whereas q(s) can only be a continuous 
vector function. It is all the moxe obvious that (1.5) will not have an exact solution if the 
required function W(X) or its derivatives have singularities at corner points of the boundary 
r. We can therefore only speak of the approximate solution of system (1.5) in the sense of 
minimizing its discrepancy. It was shown in /3/ that the integral equations can have an in- 
definitely exact solution in the case of the three-dimensional problem of the theory of 
elasticity and Laplace's equation in a simply connected domain with a sufficiently smooth 
boundary. 

It will be assumed below that, given any number e> 0, an auxiliary contour r,’ and a 
vector function z,EL,(l’,‘) exist such that the nonn'of the discrepancy of (1.5) is less than 
s /5/. For this, the solution w(x) must have an e-continuation from the domain G into G' 
/3/, i.e., given any e> 0, there must be a solution ZOO of Eq.tl.1) in the domain G', 
forwhichwe have the inequality 11 lw, - cpjlrge in the corresponding norm on r. 

Since the solution of integral equations of the 1st kind is an ill-posed problem, we 
have to use regularizing algorithms when realizing the MCL numerically. These topics were 
studied in /3-6/ as applied to MCL, so that they will not be discussed here. Even when 
regularization methods are used, however, we cannot use MCL effectively directly for problems 
with singularities on the boundary /g-11/. It is best to use the method of isolation of the 
singularities /T-12/. 

Let the boundary r of the domain G contain a corner point Q with angle 28, between the 
tangents to r. We know /12/ that, in the neig~ourhood of the point Q, the solution of 
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problem (l.l), (1.2) (when f(z) and (z) are infinitely 
can be written as the sum of an asyr _otic series and an 

v0 (5) 

differentiable and I? is close to Q) 
infinitely differentiable function 

The functions Z+(X) are the solutions of homogeneous boundary value problems for certain 
model domains (e.g., infinite wedge-shaped domains /7, 8/) and depend only on the angle 26, 
and the type of boundary conditions. for the problems of the theory of elasticity considered, 
methods of constructinq these solutions are well-known (see /7-12/ and the references quoted 
there). In representation (l.G) only those solutions which lead to finite energy /12/ appear. 

The approximate solution of the boundary value problem is now sought as 

where C =3 (c~,...,cN& are unknown 
is chosen in such a way that, in 

coefficients, w,(z) has the form (1.4), and the number Np 
the solution remaining in (1.6) after subtracting NQ terms 

of the series, there is no singularity in the DDS components /lo/. The integrofunctional 
equations which appear, when w,,,(x) is substituted into boundary conditions (1.21, are 
solved by the method of regularization with res_pect to the coefficients c and densities z /g, 
lO/. Then, the DDS components inside G and on r are found by direct application (by virtue 
of condition (1.3)) of suitable differential operators to the approximate solution =%*z (x). 

The method is considered separately below for each type of boundary value problem. 

2. Harmonic woblems. 

Correspondingly, r' consists of 

equation -Aw (5) = f (x), x E G is 

Let the domain G be bounded by p + 1 closed contours r= 
is the outer contour which embraces the rest with P>O. 

contours l?l', . ., rP+r'. The approximate solution of Poisson's 

sought as the sum of the particular solution 

lun(r)--jK(r,y)f(y)dy=Ij~ln~f~~)dy 
G c 

and a simple layer potential /3, 4/ (tl is the identity operator on ??) or a double layer 
potential /9/ (tl = l&%x, is the operator of differentiation with respect to the normal to r' 
at the point y). 

If the corner point Q is on rptl (Fig.l), we consider an infinite wedge-shaped domain, 
bounded by the tangents to r,, at the point Q and havinq an angle 2$ o. The singular solutions 
of Laplace's equation, bounded in the neighbourhood of the corner point, are sought in the form 

V~ (T, 6) = ?I [A, cos hkO + BI, sin hkOJr hk > 0 (2.1) 

where r,@ are polar coordinates with origin at the point Q and the bisector of the angle as 
polar axis /12/. The numbers hkr Ax, Bk are found by substituting (2.1) into the homogeneous 
boundary conditions for 0 = ASo. For the Dirichlet and Neumann problems hK = nk/(Q,), k = 
1 and forthemixedproblem (aw (r, fio)/8 = O,w(r, 
T& 'cgefficients Ax and 31, are given in /12/. 

-f&) = 0) hx: = -nl(4fQ + ad/(%&), k = I, . . . . 

In (1.7) it is sufficienttotake just the first term of expansion (2.1) with 0<&<1 
when @,>n (the Dirichlet and Neumann problems) or when 2&,>.5c/2 (the mixed problem). In 
this case the derivatives in the singular solution U,(X) are not bounded at the point Q. 

If, however, the corner point Q is on an interior component rl, i<i<p, of the boundary, 
the singular solutions of type (2.1) prove to be discontinuous in the domain G, since, on 
circuiting the point Q along a closed contour lying in G or alonq rperr the functions (2.1) 

return at the start of the circuit to a new value. For this case, we propose the following 
/14/. We consider a symmetric circular crescent of size 2a with one vertex at the point Q 
and the other at Q, inside the contour rr (Q1 @c)and the angle 2fi, between the tangents 
(Fig.2). Noting that the nature of the singularities of the singular solutions vk depends 
only on the angle of opening and the boundary conditions on ri close to the point Q, we choose 
the exterior ofthis crescent instead of the wedge-shaped domain. The functions vb are written 
in modified bipolar coordinates /12/ 

Xl = hsin @, x3 = h sha, h = al(cha - cos f!) (2.2) 
x = @I. %)t -=<a<+=, -B*<flB$* 

The solutions u*(u,p) are souqht as products Pk (+% (B). On applying to %(a, fi) the 
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Laplace operator A = h* (P/&z* + P/dfP) and noting that the solution must be bounded in the 
neighbourhood of the point Q (as a+ -j-w), we have 

vk (at fi) in+ sx~ (-&4[& ~0s &B + Bk sin hkflJ 0.3) 
On substituting (2.3) into the boundary conditions with p = ~!$a, we obtain expressions 

for b, 4, %r similar to those considered. Obviously, the functions vk(a,@) and their 
derivatives are continuous in the exterior of the crescent. They are not bounded as we 
approach the vertex Q1 (as a -+ -co), but Q1 is located in the complement to ??, so that the 
vk(u, fi) are bounded in g. 

3. The plane problem of the theory of elasticity. Let the domain G satisfy 
the conditions of Sect.2. Plane deformation is described by an elliptic system of differential 
equations in the displacements u (4 = (4 (4, 4 (4) 1151 

(A + t@@la;t, + /.+, + X, = 0, n = 1, 2, (34 

(E is the modulus of elasticity,v is Poisson's ratio, and Xl and Xg are forces per unit 
volume). On r we pose the two boundary conditions. 

AS the compensating loads we take forces zr(y), z%(y), distributed over l7' and lying in 
the x&~ plane. The fundamental matrix Rli(x, y) (i,j = 1,2) is found from the well-known 
expressions for the stresses and displacements under the action of concentrated forces on the 
plane /15/. The relations fox the plane stressed state are obtained in the usual way by 
replacing h by h* = &I'(1 -v). 

To improve the stability of the numerical realization of MCL, we recommend that the 
auxiliary contour r' be a step-line, and the compensating loads zr, sB be piecewise polynomial. 
Then, for the basic types of boundary value problems of the plane theory of elasticity, the 
integrals on the left-hand side of Eq.cl.5) can be evaluated in closed form. 

Methods of isolating the singularities for infinite wedge-shaped domains (when QEI’& 
have been studied in /7, 8, 11, 12/ etc. For instance, Airy's function in polar coordinates 
rr 0 has the form /7, 8/ 

Ur (r, e) = rhkC1 iAt co9 (h, + i)9 + Bk sin (h, + l)0 + (3.2) 
c* cos (hk- i)8 + &sin{& - l)ei = r'"*'gk (8) 

where the numbers 5g (in general complex) are found by solving the appropriate transcendental 
equations. We have to haVe in (1.7) the singular solutions vk with numbers O(Re&<i, to 
which there correspond, for critical values of the angles 28 B stresses which are unbounded 
at the point Q, while the condition for finite energy is satisfied /12/. 

To find the singular solutions in bipolar coordinates (2.2) we use the following forms 
of the biharmonic operator /13/: 

Using the method of separation of variables, similar to that described in Sect.2, for 
the function U/h, we find the stress function 

Uk (a+ @) = hexp (--hka)gk (0) (3.3) 
where the gk@) have the .form (3.2). While the nature of the singularities of the functions 

uk (a, pf at the point Q (as a-++on) is the same as in (3.2), the Uk (a, B) are single- 
valued in the exterior of the crescent. The expressions for the components a,", us', z&B of 

the stress tensor are obtained from the Airy function u, be the relations /13/ 

To evaluate the displacements, we use their complex forms /15/. We put z = II-!- ix*, y= 
a + t& Relations (2.2) are rewritten as z= ai cthV,y. In the notation of /15/ we have 

&(Y) = AU, ('& fk (7) = pk h) + ~QE (hwhere Qk(*p) is the harmonic function conjugate to Pa(v). 
It can be found, apart from a constant, from /15/ 
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We finally obtain fk = 4~ (hk+& - AK-&Jr where El, = A, + ill,, Sk = Ch- + iD,, At* = (k, 3~ 

1) exP (--h,Y) -h, exp [--_(A, f i)Ol. The functions pk (d (see /15/j have the form 

Pc(y)=tSft(z)dz=--sff,(yf~, &y--l 

* WP (-- %Y) Ek + exp f - t&k - 1) YI 5kl 

Notice that we can write the stress function U,(y) as 

U,(~)== Re 
I 

4pa= 
X 

(=PY- 1) (=PY- 1) 

[e% exp (- Iky) Ek f exp [- @k - 1) Yl 5tl) 

(the bar denotes the complex conjuqate). From this and the relation UK. =: Re [Q,(Z)+ xk(z)] 
we have 

XX (y) = &‘a' (exp y - I)-' {exp (-akl))gk --xp [--(Lb - ih16k} 

On differentiating with respect to z, we have for %(s) = xk’b) qk (u) * -pi (Ak+Ek -i- Ak-gk). 

The expressions for the displacements al, u,, and u,, ~6, are obtained from the relations 

/15/ 

% 0% i- %?) 
7 ==96d(p(z)-ZIP (z)-$-@, x=3--& (3.4) 

and the easily obtained expressions h(eh-- l)(u, + iu& = ia (Ill + iu,). 
The components of the displacements ur, uQ in (3.4) are given in the &,xz coordinate 

system, the origin of which is at the mid-point of the segment QQ,, while the Ox, axis 
passes through the crescent vertices Q and /& (Fig.2). All the DDS components found above 
can be written in this coordinate system by using the replacement expy =(z + ia)(z - ia)-I. From 
the relations obtained there follows the uniqueness of the DDS components of the singular 
solutions in the exterior of the crescent, and hence, in the domain G. 

4. The problem of the bending of a plate. The definition w(z) of a thin elastic 
plate satisfies the Sophie Germain equation 

A% (5) = q (x)/D, x E G @A 
where D is the cylindrical rigidity of the plate, and q(z) is the density of the distributed 
normal load. On the boundary r we pose two boundary conditions. As compensating loads we 
apply to r normal forces 21 (Y) and bending moments zz(Y) /l, 5, 6/. The corresponding 
fundamental solutions are /5, 6/ 

K1 (5, Y) = (8nW 15 - Y I In I z - y I*, KS (‘2, y) = -8K, fx, y)/&, 

The expressions for the singular solutions of the homogeneous biharmonic equation are 
in fact written in Sect.3 ((3.2), (3.3)) /lo, 14/. The other components of the DDS are found 
in polar and bipolar coordinates by using the well-known differential operators. In (1.7) we 
include the singular solutions with numbers 0< Rehk<2. These solutions have singularities 
in the moments (with 0< Re4<1) and in the shearing forces. 

Table 1 

Fig.3 

As an example of our method, we will solve the problem of the bending of a plate (Fig.3) 
fixed along its contour, under the action of a uniformly distributed load with density 
p (.z)/Dri. The radius of the circle R = 1, and the length of the side of the square is b=0,5. 
The particular solution of Eq.(4.1) is &(z)= (64I))+(~,~+ z~~)~. In the numerical solution we 
took piecewise constant compensating loads and the integrals were evaluated in closed form. 
We used the symmetry of the problem to lower the order of the system of linear algebraic 
equations obtained. 

To isolate the singularities, we inscribed in each of the four reentrant angles the 



33 

crescent (28, = 3~12, 2a = 0.2). ltie numbers Sk are found by SOlVing the equation /8, ll/ hk 

sin 2&j, sin @p&k). By the synnnetry with respect tothebissector of the reentrant angles, we 
included in (1.7) only the symmetric solutions (corresponding to the plus sign in the equation) 
with numbers 0 < Ralik < 2: & = 0.&%448&h, = 1.62928 + fO,231251 ~(a, fi) = h eXp(-ba)[ws (hk - 1) PO ~0s (hk + 1) 

8 - CO.9 (Ak + 1) &, COB @k - 1) @I. 

For complex hprwe used Rev, (a,$) and Im ~,(a, @). The distance A' to the auxiliary 
contour I" was varied in the range 0.01 - 0.3; the discrepancies of system (1.5) were least 
with b'=O.i. The present method was compared with the MCL without isolationofthesingularities. 

The computed results for &'=O,i and different numbers No of the singular solutions used 
are shown in Table 1 (the number of sections into which l/8 of the symmetric part of I" was 
divided was 5, and the number of division points of the corresponding pieces of F was 20, 
see /5/). We denote by c~,c,,c, the coefficients obtained for the singular terms ~(a.$):& and 

6P are the ratios of the errors in the boundary conditions w&.=O,R,,=&O/&IJ~=O to the 
maximum w and 8 inside the domain (in %). The maximum deflections in the segments AB and CD 
were wE = 5.753.10-' (I AE I = 0.45 1 AB I), wF = 6,997. 10-4 (1 CF 1 = 9.5 1 CD 1). 

It follows from the results that isolation of the singularities improves the quality of 
the solution of problems in irregular domains when the MCL is used. 
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